Open Nav

帕累托最优

以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.仅供学习参考之用.
   帮助中心
资料介绍:

帕累托最优(中文8000字,英文5000字)
摘  要
在过去的20年里,进化算法已经成功用于解决2个或更多个目标(称为“多目标”)的问题。这个领域被称为“进化多目标优化”,已成为一个非常活跃的研究领域,该领域上升到各式各样的算法、技术来维持多样性、选择机制、归档和应用方案,以及其他重要的贡献。在本文中,我们将提供一个通用的概述,强调在这个领域中已经发展起来的主要研究成果,以及它的研究趋势和未来的挑战。
1  介绍
两个或更多目标(称之为“多目标”)的问题在工程和许多学科中普遍存在。解决这样的问题是困难的,因为他们的目标往往相互之间有冲突,这样就有必要给出一个最优的新概念。
十九世纪末,一个最优概念在经济学中已经发展起来。后来,这个最优概念在运筹学中被正式介绍并开始应用于解决多目标问题。在过去的几年,这项研究区域增长到几乎成为一个单独的运筹学分支来进行研究。
 20 years of Evolutionary Multi-Objective
Optimization:What Has Been Done and What
 Remains To Be Done
Abstract
  Evolutionary algorithms have been successfully used to solve problem with 2 or more objective functions (called "multi-objective")during the last 20 years. This filed is now called "Evolutionary Multi-Optimization" and has become a very active research area, giving rise to a wide variety of algorithms, techniques to maintain diversity, selection mechanisms, archiving schemes, and applications, among other important contribution.  In this paper, we will provide a general overview of this area, emphasizing the main research findings that have shaped the field, as well as its research trends its future challenges.

[来源:http://Doc163.com]


1 Introduction
  Problems with two or more objectives (called "multi-objective" or "multi-criteria") are very common in engineering and many other disciplines. The solution of such problems is difficult because their objectives tend to be in conflict with each other, which makes necessary a new notion of optimality.
[资料来源:Doc163.com]

  • 关于资料
    提供的资料属本站所有,真实可靠,确保下载的内容与网页资料介绍一致.
  • 如何下载
    提供下载链接或发送至您的邮箱,资料可重复发送,若未收到请联系客服.
  • 疑难帮助
    下载后提供一定的帮助,收到资料后若有疑难问题,可联系客服提供帮助.
  • 关于服务
    确保下载的资料和介绍一致,如核实与资料介绍不符,可申请售后.
  • 资料仅供参考和学习交流之用,请勿做其他非法用途,转载必究,如有侵犯您的权利或有损您的利益,请联系本站,经查实我们会立即进行修正! 版权所有,严禁转载
    doc163.com Copyright © 2012-2024 苏ICP备2021029856号-4