Open Nav

一种深度学习的航班延误预测方法

以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.仅供学习参考之用.
   帮助中心
资料介绍:

一种深度学习的航班延误预测方法(中文5500字,英文PDF)
摘要-深度学习在图像识别、语音识别、机器翻译等各种机器学习任务上都有了显著的改进。在该范例取得巨大成功的启发下, 人们尝试将深度学习算法应用于具有大数据的数据分析问题,包括交通流量预测。然而, 并没有试图将深度学习算法应用于空中交通数据的分析。本文研究了深度学习模型在空中交通延误预测任务中的有效性。通过结合基于深度学习范例的多个模型, 建立了一个准确而稳健的预测模型, 从而能够对空中交通延误的模式进行详细的分析。特别是递归神经网络 (RNN) 在序列数据建模方面表现出了很高的准确性。单个机场的出发和到达航班延误的日常序列已经由长短期记忆 RNN 体系结构建模。结果表明, 随着体系结构的深入, RNN 的精度得到了提高。本文还讨论了构建深 RNN 体系结构的四种不同方法。最后, 对所提出的预测模型的精度进行了测量、分析, 并与以往的预测方法进行了比较。与所有其他方法相比, 它显示出最佳的准确性。
 

[资料来源:http://www.doc163.com]

一种深度学习的航班延误预测方法


  [版权所有:http://DOC163.com]

  • 关于资料
    提供的资料属本站所有,真实可靠,确保下载的内容与网页资料介绍一致.
  • 如何下载
    提供下载链接或发送至您的邮箱,资料可重复发送,若未收到请联系客服.
  • 疑难帮助
    下载后提供一定的帮助,收到资料后若有疑难问题,可联系客服提供帮助.
  • 关于服务
    确保下载的资料和介绍一致,如核实与资料介绍不符,可申请售后.
  • 资料仅供参考和学习交流之用,请勿做其他非法用途,转载必究,如有侵犯您的权利或有损您的利益,请联系本站,经查实我们会立即进行修正! 版权所有,严禁转载
    doc163.com Copyright © 2012-2024 苏ICP备2021029856号-4