Open Nav

使用贝叶斯混合概率线性回归的语音转换及其动态核心特征

以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.仅供学习参考之用.
   帮助中心
资料介绍:

使用贝叶斯混合概率线性回归的语音转换及其动态核心特征(中文4500字,英文PDF)
摘要
     语音转换可以制定作为找到一个映射功能化的变换功能的源讲话者那些目标讲话者。基于以高斯混合模型(GMM)为基础的转换技术[1,2]的有效性和高效性,其已被广泛用于语音转换。在最近的研究工作中[3],我们将基于高斯混合模型的映射推广到混合模型的概率线性归(MPLR)。但是,基于映射的高斯混合模型和概率线性回归都会遭受过度适应的问题,特别是当语言培训次数很少时,更是如此。同时它们两个都忽略语音特征之间的固有时间依赖性。本文通过引入动态核心特征和进行贝叶斯概率线性回归分析来解决这个问题。在这个问题中,动态核心特征被计算为当前帧,上一帧和下一帧的内核变换,其可以对特征中的非线性和动态进行建模。我们进一步开发最大后验(MAP)推理,以通过引入先于核心变换的参数来缓解过度问题。我们的实验结果表明提出的这个方法实现后会有比基于MPLR的模型更好的性能。
关键词:动态核心特征,贝叶斯推理,语音转换,混合模型的概率线性回归
  [来源:http://Doc163.com]

使用贝叶斯混合概率线性回归的语音转换及其动态核心特征

  [版权所有:http://DOC163.com]

  • 关于资料
    提供的资料属本站所有,真实可靠,确保下载的内容与网页资料介绍一致.
  • 如何下载
    提供下载链接或发送至您的邮箱,资料可重复发送,若未收到请联系客服.
  • 疑难帮助
    下载后提供一定的帮助,收到资料后若有疑难问题,可联系客服提供帮助.
  • 关于服务
    确保下载的资料和介绍一致,如核实与资料介绍不符,可申请售后.
  • 资料仅供参考和学习交流之用,请勿做其他非法用途,转载必究,如有侵犯您的权利或有损您的利益,请联系本站,经查实我们会立即进行修正! 版权所有,严禁转载
    doc163.com Copyright © 2012-2024 苏ICP备2021029856号-4