Open Nav

自动驾驶异构计算能力及CNN算法的研究

以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.仅供学习参考之用.
   帮助中心
资料介绍:

自动驾驶异构计算能力及CNN算法的研究(任务书,开题报告,论文说明书31000字)
摘要
自动驾驶是传统汽车产业和新一代信息技术结合的产物,是信息化时代到来所必然产生的结果。在信息技术日益发达地情况下,传统的汽车已逐渐不能满足人们的生活需要,人们趋向于更加便捷更加智能的生活。而无人驾驶技术是一门多学科交叉而成的新技术,涉及到通信技术,计算机技术,车辆工程技术以及数学学科等多们学科技术。本文主要针对无人驾驶系统中的硬件计算平台进行研究,了解常用的几种异构计算技术,并分析各自的优劣;同时本文还对CUDA,一种GPU并行通用计算平台展开了详细地介绍,分析了CPU-GPU异构计算平台相对于传统CPU集群的优势,同时对如何进行CUDA程序优化展开了详细地描述。最后对无人驾驶系统的环境感知部分所要用到的CNN算法进行了深入的研究,了解到了卷积神经网络在计算机视觉领域的广泛应用以及该技术在环境感知部分发挥的重要作用;同时利用CNN算法完成了基于MNIST数据库的手写数字识别的实验。
关键词:自动驾驶,异构计算,CUDA,CNN,手写数字识别
 
Abstract
Autopilot is a product of the combination of the traditional automotive industry and the new generation of information technology. It is the result of the arrival of the information age. With the development of information technology, traditional cars have gradually failed to meet people's needs. People tend to be more convenient and smarter lives. Driverless technology is a multidisciplinary new technology, involving communication technology, computer technology, vehicle engineering technology and mathematics disciplines and many other subjects. This paper focuses on the research of hardware computing platforms in unmanned systems, understanding several commonly used heterogeneous computing technologies, and analyzing their advantages and disadvantages. At the same time, this article also presents a detailed introduction to CUDA, a GPU parallel general computing platform. This paper analyzes the advantages of CPU-GPU heterogeneous computing platform over traditional CPU clusters, and describes in detail how to perform CUDA program optimization. Finally, the CNN algorithm used in the environment-sensing part of the unmanned system is studied in depth. It is understood that the convolutional neural network is widely used in the field of computer vision and the technology plays an important role in the perception of the environment. At the same time, CNN is used. The algorithm completed the experiment of handwritten digit recognition based on the MNIST database. [资料来源:Doc163.com]
Keywords:Autopilot, heterogeneous computing, CUDA, CNN, handwriting recognition
 
目录
摘要    I
Abstract    II
目录    3
第1章绪论    1
1.1自动驾驶汽车的发展历程    1
1.2研究现状    2
1.2.1自动驾驶异构计算平台的现状及发展    3
1.2.2人工神经网络的发展及现状    3
1.2.3卷积神经网络的发展及现状    4
1.3研究内容及主要工作    5
1.4本章小结    5
第2章自动驾驶异构计算平台    7
2.1异构计算    7
2.1.1异构计算的概述    7
2.1.2异构计算的研究现状    7
2.2几种常见的异构计算平台    8
2.2.1基于CPU-GPU架构的异构计算平台    8
2.2.2基于CPU-FPGA架构的异构计算平台    9
2.2.3基于ASIC的异构计算平台    9

[来源:http://Doc163.com]

2.2本章小结    10
第3章基于CPU—GPU异构模型的CUDA计算平台    11
3.1 CPU—GPU异构计算模型    11
3.1.1CPU和GPU的介绍及硬件结构的比较    11
3.2 CUDA简介    12
3.2.1 CUDA理论基础    12
3.2.1 CUDA的应用    14
3.3 基于CUDA模型的GPU硬件体系结构    14
3.4 基于CUDA的编程模型    16
3.4.1 线程组织    17
3.4.2 存储结构    18
3.4.3 编程模型    19
3.5本章小结    20
第4章 CUDA程序的性能优化    21
4.1影响计算性能的因素    21
4.1.1 访存延迟    21
4.1.2 负载分配    22
4.1.2 同步开销    22
4.2访存优化    23
4.2.1存储器间数据传输的优化    23
4.2.2全局存储器的联合访问    24 [版权所有:http://DOC163.com]
4.2.3利用共享存储器进行合并    25
4.3指令流的优化    26
4.3.1 指令性能和和延迟    26
4.3.2避免控制流分支    27
4.4本章小结    28
第5章人工神经网络和卷积神经网络    29
5.1人工神经网络    30
5.1.1神经感知元模型    30
5.1.2感知机与多层网络    31
5.1.3 误差逆传播算法    32
5.2卷积神经网络    35
5.2.1卷积神经网络的结构    36
5.2.2卷积神经网络的特点    37
5.3本章小结    38
第6章基于卷积神经网络的手写数字识别    39
6.1手写数字识别的概述    39
6.2手写数字识别的流程    39
6.3MNIST手写数字数据库的简介    39
6.4基于CNN的手写数字识别    40
6.4.1基于MLP的手写数字识别    40
6.4.2基于CNN的手写数字识别算法    41 [来源:http://www.doc163.com]
6.4.3基于CNN改进的手写数字识别算法    42
6.5本章小结    43
第7章结论    44
7.1全文总结    44
7.2展望    44
参考文献    46
致谢    48
[资料来源:http://doc163.com]

  • 关于资料
    提供的资料属本站所有,真实可靠,确保下载的内容与网页资料介绍一致.
  • 如何下载
    提供下载链接或发送至您的邮箱,资料可重复发送,若未收到请联系客服.
  • 疑难帮助
    下载后提供一定的帮助,收到资料后若有疑难问题,可联系客服提供帮助.
  • 关于服务
    确保下载的资料和介绍一致,如核实与资料介绍不符,可申请售后.
  • 资料仅供参考和学习交流之用,请勿做其他非法用途,转载必究,如有侵犯您的权利或有损您的利益,请联系本站,经查实我们会立即进行修正! 版权所有,严禁转载
    doc163.com Copyright © 2012-2024 苏ICP备2021029856号-4