实际问题中的优化设计模型
浅谈线性变换与矩阵的对角化问题(9000字)
摘 要: 线性变换是一个几何概念,矩阵是一个代数概念,它们之间的关系有可能用代数的方法来研究几何问题,反过来也可以用几何的方法来研究矩阵的问题。掌握了这种方法就是掌握了线性代数的核心,对于线性变换对角化与矩阵对角化之间的联系,本文通过对易理解的矩阵的对角化问题来研究相对复杂线性变换的对角化问题,然后通过研究特征值与特征向量的性质,再研究对角化的必要条件与充分条件,从而更轻松的理解并掌握线性变换的对角化问题。
关键词: 线性变换;矩阵;线性变换对角化;矩阵对角化;特征值;特征向量
Discussion on the linear transformation and matrix diagonalization
Abstract: Linear transformation is a geometric concepts, the matrix is a concept of algebra, the relationship between them is possible by using algebraic method to study geometric problems, which in turn can also use geometric method to study the problem of matrix. Master this method is mastered the core of linear algebra, for the linear transform and matrix diagonalization diagonalization similar to the link between the easily understood by matrix diagonalization to study the relative complexity of diagonalization of the linear transformation, and then by studying the eigenvalues and eigenvectors nature, and then study the necessary conditions for diagonalization and sufficient conditions, and thus more easily understand and grasp the diagonalization of linear transformation.
Key words: Linear transformation; Matrix; Diagonalization of linear transformation;Similarity matrix diagonalization; Eigenvalues ; eigenvectors
目 录
摘 要 1
关键词 1
1 前言 2
2 矩阵的相似对角化问题 3
2.1 矩阵相似对角化 3
2.2 矩阵的特征值与特征向量 4
2.3 矩阵A可相似对角化的初步结论 4
3 线性变换可对角化问题 5
3.1 线性变换对角化 5
3.2 线性变换的特征值与特征向量 6
3.3 线性变换对角化与矩阵相似对角化的关系...............8
3.4 线性变换的特征值与特征向量和对应矩阵的关系...........8
4 线性变换可对角化的充要条件 9
[资料来源:http://doc163.com]
4.1 线性变换可对角化的两个充分条件 9
4.2 线性变换可对角化的两个充要条件 11
4.3 线性变换对角化的方法和例子.................. 14
5 对角化问题在某些方面的应用 16
6 结论 19
参考文献 20
致 谢........................20 [资料来源:https://www.doc163.com]