自适应多目标演化优化算法研究

自适应多目标演化优化算法研究(论文12000字)
摘要:近年来,演化算法在多目标优化问题中得到了广泛的应用,但是多目标演化算法在使用过程中会遇到各种参数设置问题,本文旨在对多目标演化算法中的参数进行自适应改进。主要工作为:(1)详细介绍了演化算法中最典型的遗传算法,对多目标优化的基本概念运用数学公式进行了描述。(2)针对多目标优化算法中使用固定参数(交叉概率、变异概率)的缺点,提出了一种将自适应机制建立在非支配排序算法(Nondominated Sorting Genetic Algorithm II,NSGA-II)基础上的自适应NSGA-II算法(ANSGA-II),利用经典测试函数比较ANSGA-II和NSGA-II的最优解分布情况。(3)对ANSGA-II算法用于车间工作生产优化的案例进行了分析,体现了该算法的实际应用性很强。
关键词:多目标优化;遗传算法;NSGA-II;自适应机制
Multi-objective differential evolution algorithm with elist archive
and crowding entropy-based Problems and its application
Abstract:In recent years, evolutionary algorithms have been widely used in multi-objective optimization problems, but the multi-objective evolutionary algorithm will encounter a variety of parameter setting problems in the use of the process, this paper aims to improve the parameters of the multi-objective evolutionary algorithm adaptive.The main work of this paper is as follows: (1) The most typical genetic algorithm in evolutionary algorithm is introduced in detail. The basic concept of multi-objective optimization is described by mathematical formula. (2) To overcome the disadvantages of using fixed parameters (crossover probability and mutation probability) in the multi-objective optimization algorithm, they proposed an adaptive NSGA-II Algorithm (ANSGA-II) that based on Non-dominated Sorting Algorithm II (Nondominated Sorting Genetic Algorithm II, NSGA-II) and dominated the adaptive mechanism, and compared the distribution of the optimal solution between ANSGA-II Algorithm and NSGA-II Algorithm using the classical test function. (3) The case of ANSGA-II algorithm used in workshop production optimization is analyzed, which shows that the algorithm has strong practical application.
[资料来源:www.doc163.com]
Keywords:Multi-objective optimization;Genetic algorithm;NSGA-II;Adaptive mechanism
[来源:http://www.doc163.com]


目录
1绪论 1
1.1研究背景与研究意义 1
1.1.1研究背景 1
1.1.2研究意义 1
1.2国内外研究现状 1
1.2.1遗传算法的发展 1
1.2.2多目标优化遗传算法的发展 2
1.2.3自适应技术的发展 2
1.3论文研究内容 3
1.4论文结构 3
2遗传算法 3
2.1遗传算法基本思想 3
2.2遗传算法流程 4
[版权所有:http://DOC163.com]
2.2.1编码 5
2.2.2适应度函数计算 5
2.2.3遗传算法的基本操作 5
2.3单目标函数优化分析 6
3多目标优化的遗传算法 8
3.1多目标优化问题 8
3.2非支配排序遗传算法 8
3.2.1快速非支配排序 9
3.2.2拥挤度 9
3.2.3精英策略 10
3.2.4算法流程 11
3.3自适应机制 12
3.4函数验证与分析 13
3.4.1测试函数 13
3.4.2算法分布性分析 14
3.4.3测试结果分析 15
4自适应多目标遗传算法在车间生产中的应用 17
4.1车间生产加工数据 17
4.2仿真实验 17
5结论与展望 19
5.1结论 19
5.2展望 19
参考文献 20 [来源:http://www.doc163.com]
致谢 22 [来源:http://Doc163.com]
