Open Nav

基于数字水印的深度神经网络版权保护技术研究

以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.仅供学习参考之用.
   帮助中心
资料介绍:

基于数字水印的深度神经网络版权保护技术研究(论文15000字)
摘要:深度神经网络训练模型的共享是近年来深度学习系统研究和开发的一个重要方面,而训练一个优秀神经网络需要耗费大量人力物力,因此,深度神经网络训练模型的版权保护具有重要意义。为此,本文决定使用数字水印技术来保护训练模型的版权,并通过训练过的模型来检测侵犯训练模型版权的行为。
本文分析了在深度神经网络中嵌入数字水印的嵌入目标、嵌入情况、嵌入需求以及可能的攻击类型。最后,通过全面的实验证明了基于数字水印的深度神经网络版权保护算法的有效性,并且揭示了数字水印在保护深度神经网络模型版权这项研究的潜力。
关键词:数字水印;深度神经网络;残差网络

Research on Copyright Protection of Deep Neural Network Based on Digital Watermarking
Abstract:In recent years,the sharing of the deep neural network model sharing is an important aspect of deep learning system research and development, whereas the training of the model will expand a lot of time and money.Therefore, it is necessary to protect the copyright of deep neural network training model.This paper decides to use digital watermarking technology to protect the copyright of the training model and detect the infringement of the copyright of the training model through the trained model. [资料来源:www.doc163.com]
This paper analyzes the embedded target, embedded situation, embedded requirement and possible attack types of embedded digital watermark in deep neural network.Finally, the effectiveness of the deep neural network copyright protection algorithm based on digital watermarking is proved through comprehensive experiments, and the potential of digital watermarking in copyright protection of deep neural network model is revealed.
Key words:Digital watermarking; Deep neural network; Residual network
  [来源:http://Doc163.com]

基于数字水印的深度神经网络版权保护技术研究
基于数字水印的深度神经网络版权保护技术研究


目录
1.    引言    1
1.1研究目的    1
1.2研究背景与研究意义    1
1.3本文的研究内容    1
1.4论文结构安排    1
2.    相关技术简介    2
2.1数字水印技术    2
2.1.1数字水印的基本概念    2
2.1.2数字水印的发展和现状    3
2.1.3数字水印的特性    4
2.1.4数字水印的性能评估标准    4 [来源:http://Doc163.com]
2.1.5数字水印的常见攻击类型    5
2.2深度神经网络    5
2.2.1人工神经网络    5
2.2.2深度神经网络    6
3.    基于数字水印的深度神经网络版权保护算法    7
3.1算法总体设计    7
3.1.1嵌入目标    8
3.1.2需求分析    8
3.1.3嵌入情况    9
3.1.4可能的攻击类型    10
3.2水印嵌入    10
3.2.1嵌入目标再明确    10
3.2.2数字水印的嵌入过程    11
3.3水印提取    13
3.4算法实现    13
3.4.1Keras介绍    13
3.4.2Numpy介绍    13
3.4.3正则化矩阵    14
3.4.4嵌入损失函数    14
4.    实验    15
4.1实验设置    15
4.1.1神经网络的选择    15

[资料来源:www.doc163.com]


4.1.2训练参数设置    16
4.1.3数据集    16
4.2创建残差网络    17
4.3实验过程及结果分析    17
4.3.1训练嵌入    17
4.3.2微调嵌入    19
4.3.3数字水印的鲁棒性    19
4.3.4两个σ(x)函数的比较    20
5.    总结    21
5.1结论    21
5.2未来工作    21
5.2.1直接嵌入    21
5.2.2数字水印的鲁棒性研究    21
5.2.3其他加密方式    21
5.2.4水印覆盖    21
参考文献:    22
附录    24
致谢    28

[版权所有:http://DOC163.com]

  • 关于资料
    提供的资料属本站所有,真实可靠,确保下载的内容与网页资料介绍一致.
  • 如何下载
    提供下载链接或发送至您的邮箱,资料可重复发送,若未收到请联系客服.
  • 疑难帮助
    下载后提供一定的帮助,收到资料后若有疑难问题,可联系客服提供帮助.
  • 关于服务
    确保下载的资料和介绍一致,如核实与资料介绍不符,可申请售后.
  • 资料仅供参考和学习交流之用,请勿做其他非法用途,转载必究,如有侵犯您的权利或有损您的利益,请联系本站,经查实我们会立即进行修正! 版权所有,严禁转载
    doc163.com Copyright © 2012-2024 苏ICP备2021029856号-4