基于神经网络算法的医疗费用数据挖掘
资料介绍:
基于神经网络算法的医疗费用数据挖掘(论文15000字)
摘要:医疗保险费用是一个世界性话题。同时怎么样控制医疗保险费用是医疗保险行业发展的最重要的因素。然而因为卫生行业的特殊性,医疗保险系统的个体之间存在数据不对应等问题。从而激起医疗保险费用不符合正常规律增长。想要解决这个问题,应该重视数据的平衡问题。对医疗保险数据进行数据挖掘能够提供许多有效的信息,这些信息对于解决信息不对称问题提供了参考,有巨大的价值与意义。
作为现今极为常用的数据挖掘平台,SPSS modeler14.1因其强大而又方便的数据挖掘功能被广泛应用于电子商务、教育、金融、通信等领域。本文主要运用神经网络算法模型、可视化功能等进行数据分析,得到住院费用的主要影响因素。进一步挖掘得出对医疗保险数据内部的特征的预测。得到的结论作为参考,可以帮助解决数据不对称的问题,为政策的制定提供了依据,根本上缓解医疗保险系统中存在的问题。其次,数据挖掘技术的使用有利于提高内部作业人员的效率、能力与质量。
关键词:数据挖掘 信息不对称 医疗费用SPSS modeler 14.1
Medical expenses data mining based on neural networkalgorithm
[版权所有:http://DOC163.com]
Abstract:Medical insurance expenses is an important worldwide topic, it is the key to the development of the medical insurance that how to control the medical insurance expenses. However, because of the particularity of the medical sector, the asymmetry of information between medical insurance system triggers medical insurance expenses increase unreasonably. If we want to deal with the problem, we should focus on the balance of the data. Medical insurance data mining will provide us a lot of valuable information, which as a reference to resolve the problem and have a giant significance.
As a common platform for data mining, SPSS modeler 14.1 has been widely used in e-commerce, education, finance, communication and other fields with its powerful and convenient capabilities. In this paper, data mining based on the functions such as neural network and visualization can find out the main factors which affect the expanses, so that we can get the forecast about the characteristic in the medical insurance data. The conclusion can solve the dilemma of the information asymmetry as a reference, provide basis to make policy, relieve the problem between medical insurance system. What is more, the use of data mining technology can help to increase the efficiency, quality and management level of the medical insurance management. [资料来源:http://doc163.com]
Key words;Data mining Medical expenses Information asymmetry SPSS modeler 14.1
目录
1 绪论 3
1.1研究背景 3
1.2国内外研究现状 3
1.3研究内容 4
1.4论文结构 4
2 医疗保险系统 5
2.1医疗保险的概念 5
2.2医疗保险系统的构成 5
2.3医疗保险主体之间的关系 6
2.4医疗保险系统中存在的信息不对称问题 6
2.5本章小结 6
3 数据挖掘概述 7
3.1数据挖掘的起源与定义 7
3.2数据挖掘的步骤 7
3.3数据挖掘算法 8
3.4数据挖掘的应用 9
3.5医疗保险数据挖掘时需要注意的问题 9
3.6本章小结 10
4 基于BP神经网络算法的住院费用的主要影响因素挖掘 10 [资料来源:http://Doc163.com]
4.1基于人工神经网络的主要影响因素提取 10
4.1.1人工神经网络概述 10
4.1.2 BP神经网络算法 11
4.2数据预处理 12
4.3基于Feature Selection的主要影响因素提取 13
4.4住院费用影响因素挖掘 14
4.5主要影响因素的分析 20
4.5.1入院情况的影响 20
4.5.2住院天数的影响 22
4.5.3医院等级的影响 23
4.5.4出院情况的影响 24
4.5.5是否手术的影响 25
4.6本章小结 25
5 基于Kohonen神经网络算法的住院费用标准制定 25
5.1 Kohonen神经网络 25
5.2对患者进行聚类分析 26
5.3住院费用以及住院天数标准 30
5.4本章小结 30
[资料来源:www.doc163.com]
6 总结 30
参考文献 31
致谢 33
[资料来源:www.doc163.com]