Open Nav

基于MATLAB的自动泊车控制算法与仿真研究(英文版)

以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.仅供学习参考之用.
   帮助中心
资料介绍:

基于MATLAB的自动泊车控制算法与仿真研究(英文版)(任务书,开题报告,文献摘要,外文翻译,论文说明书英文版21000字,CAD图纸6张,MATLAB文件,答辩PPT)
Research on Automatic Parking Control Algorithm and Simulation Based on MATLAB(含MATLAB)(任务书,开题报告,文献摘要,外文翻译,论文说明书英文版21000字,CAD图纸6张,MATLAB文件,答辩PPT)
Abstract
With the increase of car ownership and the complex and crowded parking environment, it is difficult for drivers to complete the parking operation quickly and accurately, and even cause traffic accidents such as vehicle collision and road jam because of poor parking skills.The emergence of automatic parking system can help drivers parking safely and reduce the occurrence of safety accidents.
In this paper, the automatic parking process of an internal combustion locomotive with front wheel steering in parallel, vertical and skew parking spaces is studied by using MATLAB software, and the simulation is carried out. Firstly, according to vehicle parameters and obstacle avoidance constraints, the minimum parking space and parking starting position are calculated. Meanwhile, the path planning of parallel parking spaces is carried out by quintic polynomial, and the path planning of vertical parking spaces and skew parking spaces is carried out by quadric polynomial. Finally, fuzzy control algorithm and neural network algorithm are used to realize automatic parking.

[资料来源:https://www.doc163.com]

Finally, the pre-operation, decision-making speed, correlation coefficient between input data and output data of the two algorithms are compared. Both algorithms need a lot of preliminary work. Fuzzy control needs to establish a fuzzy rule base, while neural network needs a lot of data training, so that the two control algorithms can complete automatic parking. The decision-making speed of the neural network algorithm is faster than that of the fuzzy control algorithm, and the correlation coefficient is larger. At the same time, the generalization ability of the neural network algorithm is better, and the requirement of the initial position and posture of the vehicle is lower.
Key words:Automatic Parking; Control Algorithm; MATLAB/Simulink; Fuzzy Control; Neural Network
 

[资料来源:http://www.doc163.com]

基于MATLAB的自动泊车控制算法与仿真研究(英文版)
基于MATLAB的自动泊车控制算法与仿真研究(英文版)
基于MATLAB的自动泊车控制算法与仿真研究(英文版)
基于MATLAB的自动泊车控制算法与仿真研究(英文版)


Contents
Abstract    Ι [来源:http://Doc163.com]
Chapter 1 Introduction    1
1.1 The Background and Significance of Research    1
1.2 Research Status and Analysis of Automatic Parking System    1
1.2.1 Current Research Situation Abroad    2
1.2.2 Current Research Situation in China    3
1.2.3 Analysis of Automatic Parking System    6
1.3 Research Status of Parking Space Detection    7
1.4 The Main Research Contents of This Paper    8
Chapter 2 Calculation of Parking Parameters and Starting Position    9
2.1 Establishment of Vehicle Kinematics Model    9
2.2 Parking Parameters Determination    11
2.2.1 Calculation of Minimum Turning Radius in Reversing Process    12
2.2.2 Minimum parking space required for parallel parking    13
2.3 Calculation of Starting Point Area in Parallel Parking Space    14 [资料来源:http://doc163.com]
2.4 Calculation of Starting Point Area in Vertical Parking Space    17
2.5 Calculation of Starting Point Area in Skew Parking    20
2.6 Summary    22
Chapter 3 Path Planning of Automatic Parking System    24
3.1Parallel Parking    24
3.1.1 Parallel Parking Path Planning    25
3.1.2 Simulation of Parallel Parking Path    26
3.2 Vertical Parking    29
3.2.1 Vertical Parking Path Planning    29
3.2.2Parking Path Simulation of Vertical Parking Space    30
3.3 Skew Parking    33
3.3.1 Parking Path Planning for Skew Parking    33
3.3.2 Parking Path Simulation of Skew Parking    36
3.4 Summary    38
Chapter 4 Design and Simulation of Fuzzy Control Algorithms    39
4.1 Basic Principles of Fuzzy Control Algorithms    39 [来源:http://Doc163.com]
4.2 Design of Fuzzy Controller    41
4.3 Path Tracking Simulation    46
4.4 Summary    63
Chapter 5 Design of Neural Network Control Algorithms    64
5.1    Basic Principles of Neural Networks    64
5.1.1 Working Principle and Structure of Neurons    64
5.1.2 Working Principle and Structure of Neural Network    65
5.2    Establishment of Neural Network Model    67
5.2.1 Data Acquisition of Neural Network Training    67
5.2.3 Establishment of Hidden Layer Model of Neural Network    70
5.2.3 Selection of Neural Network Training Algorithms    72
5.2.4 Establishment of an Automatic Parking Model Based on Neural Network    73
5.3 Summary    78
Chapter 6 Comparing and Evaluating Algorithms    79

[资料来源:https://www.doc163.com]


6.1 Preliminary Work Contents of Two Algorithms    79
6.1.1 Preliminary Work Content of Fuzzy Control    79
6.1.2 Preliminary Work Contents of Neural Networks    80
6.1.3 Comparison    81
6.2 Decision Speed of Two Algorithms    81
6.3 Relevance Coefficient of Simulation Results of Two Algorithms    81
6.4 Summary    82
Chapter 7 Summary and Prospect    83
References    85
  [来源:http://www.doc163.com]

  • 关于资料
    提供的资料属本站所有,真实可靠,确保下载的内容与网页资料介绍一致.
  • 如何下载
    提供下载链接或发送至您的邮箱,资料可重复发送,若未收到请联系客服.
  • 疑难帮助
    下载后提供一定的帮助,收到资料后若有疑难问题,可联系客服提供帮助.
  • 关于服务
    确保下载的资料和介绍一致,如核实与资料介绍不符,可申请售后.
  • 资料仅供参考和学习交流之用,请勿做其他非法用途,转载必究,如有侵犯您的权利或有损您的利益,请联系本站,经查实我们会立即进行修正! 版权所有,严禁转载
    doc163.com Copyright © 2012-2025 苏ICP备2021029856号-4